US009207990B2

a2 United States Patent

Giles et al.

US 9,207,990 B2
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

METHOD AND SYSTEM FOR MIGRATING
CRITICAL RESOURCES WITHIN
COMPUTER SYSTEMS

Inventors: Chris M. Giles, Ft. Collins, CO (US);
Russ W. Herrell, Ft. Collins, CO (US);
John A. Morrison, Ft. Collins, CO (US);
John R. Planow, Roseville, CA (US);
Joseph F. Orth, Ft. Collins, CO (US);
Gerald J. Kaufman, Jr., Ft. Collins, CO
(US); Andrew R. Wheeler, Ft. Collins,
CO (US); Daniel Zilavy, Ft. Collins, CA
us)

Assignee: Hewlett-Packard Development

Company, L.P., Houston, TX (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1681 days.

Appl. No.: 11/863,842

Filed: Sep. 28, 2007

Prior Publication Data

US 2009/0089787 Al Apr. 2, 2009

Int. Cl1.
GO6F 9/46
GO6F 9/50
GO6F 9/48
GO6F 9/32
GO6F 11/07
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

GO6F 9/5077 (2013.01); GO6F 9/5061
(2013.01); GOGF 9/327 (2013.01); GOGF
9/4812 (2013.01); GOGF 11/0772 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,787,095 A 7/1998 Myers et al.
5,842,031 A 11/1998 Barker et al.
6,366,945 B1* 4/2002 Fongetal.cccceene. 718/104
6,421,775 Bl 7/2002 Brock et al.
6,434,628 B1* 8/2002 Bowman-Amuah 714/48
6,457,100 Bl 9/2002 Ignatowski et al.
6,668,308 B2 12/2003 Barroso et al.
6,671,792 B1 12/2003 McAllister
6,684,343 Bl 1/2004 Bouchier et al.
6,725,317 Bl 4/2004 Bouchier et al.
6,754,755 B1* 6/2004 Johnsonetal. 710/262
6,763,441 B2* 7/2004 Bobakcccccecerriinnnn. 711/162
6,848,003 Bl 1/2005 Arimilli et al.
6,910,062 B2 6/2005 Arimilli et al.
6,918,052 B2 7/2005 Bouchier et al.
6,973,517 B1 12/2005 Golden et al.
(Continued)
OTHER PUBLICATIONS

Planning Superdome Cofiguration; Building Blocks and Definitions,
Glossary, Appendix A, pp. 287-295; Chapter 4, pp. 161-198.

Primary Examiner — Hiren Patel
(74) Attorney, Agent, or Firm — Whyte Hirschboeck Dudek
S.C.

(57) ABSTRACT

A method and system for migrating at least one critical
resource during a migration of an operative portion of a com-
puter system are disclosed. In at least some embodiments, the
method includes (a) sending first information constituting a
substantial copy of a first of the at least one critical resource
via atleast one intermediary between a source component and
a destination component. The method further includes (b)
transitioning a status of the destination component from
being incapable of receiving requests to being capable of
receiving requests, and (c) re-programming an abstraction
block to include modified addresses so that at least one
incoming request signal is forwarded to the destination com-
ponent rather than to the source component.

1 Claim, 4 Drawing Sheets

1\
2
| a A I
| l ! |
| Primary 24—p S v I
I 10— I
I |12 cPU 6 32 cPU :
' l 18 Chipset i
: Fabric |
| ram = AGENT Q —>| acenT (! — RAM |
| 22 36 |
8
| [1 20 agh 8] ..D 26 |
| APDH ba PDHX 1
1 14— |
[7S I
L]
| 15 |
Out-of-Band 17
| N |
38 Fabric

US 9,207,990 B2

Page 2
(56) References Cited 2005/0125604 Al* 6/2005 Williamscccoceenenne T11/112
2005/0240649 Al 10/2005 Elkington et al.
U.S. PATENT DOCUMENTS 2005/0246508 Al 11/2005 Shaw
2006/0020940 Al* 1/2006 Cultercccocvvvvvenenne 718/100

7,398,343 Bl* 7/2008 Marmashetal. 710/269 2006/0031672 Al 2/2006 Soltis, Jr. et al.

7,461,231 B2* 12/2008 Brandaetal. ... T1/1T73 2006/0036895 Al* 2/2006 Henricksoncccooue... 714/4
2002/0069270 A1* 6/2002 Walton et al. ... e 700/220 2006/0059317 Al* 3/2006 Kakeda 7117145
2002/0144063 Al 10/2002 Peir et al. 2006/0149878 Al* 7/2006 Carmichael et al. ... 710/263
2003/0009641 Al 1/2003 Arimilli et al. 2006/0282644 Al* 12/2006 Wong 711/206
2003/0037092 Al* 2/2003 McCarthy etal. 709/104 2007/0011495 Al* 1/2007 Armstrong et al. 714/39
2003/0131042 Al* 7/2003 Awadaetal. .oooviveviiin, 709/104 2007/0094668 Al* 4/2007 Jacquot etal. 718/104

2007/0113079 Al* 5/2007 Ttoetal. 713/166
2003/0131067 AL ~ 7/2003 Downer et al. 2007/0198797 Al* 82007 Kavuri etal. . 711165
2004/0107383 Al 6/2004 Bouchieretal. 714/4

. 2008/0267066 Al* 10/2008 Archer et al. . .. 370/235

2004/0143729 Al* 7/2004 Bouchieretal. 713/100 «

2008/0320275 Al* 12/2008 Duffyetal.cccccooevenee. 712/28
2004/0268044 Al 12/2004 Heller, Jr. et al. 2008/0320291 AL* 12/2008 Duffy etal. ..o 712/244
2005/0021913 Al 1/2005 Heller, Jr.
2005/0022203 Al* 1/2005 Zisapeletal. 718/105 * cited by examiner

U.S. Patent Dec. 8, 2015 Sheet 1 of 4 US 9,207,990 B2

zl FIGURE 1

| 4 6 |
| ! v |
l Primary 24 Secondary :
l 10—>

I |42 CPU (}3@6 32? CPU I
I l 18 y Chipset :
I Fabric |
: RAM C:_F_D AGENT > AGENT (}?{) RAM |
| 22 I 36 |

8

I |
| i
| |
[|
I |
| |

15 T Out-of-Band 17
38 Fabric |

U.S. Patent Dec. 8, 2015 Sheet 2 of 4 US 9,207,990 B2

G

Complex Management FIGURE 2
44 —p Intelligence determines need
for PDH migration

<z

Identify secondary cell for
46— PDH migration and place in
passive mode

—_ e e e e e e A ————— — Cl
| il fe— Clone

|) Enable clone mode in primary |
43 processor agent |

|)’ e
I
I
I
|
——1

| ; Enable active clone mode in
50 | primary PDH

Clone PDH resources from

| primary to secondary PDH
uanfenfeunsifensiunl~ § oo fononianangil
54 : l Enable :;:\:‘;?'y TII,\gHmode in :4— TAS mode
l <> |
| On receiving packet for PDH |< —53

| I space, primary PDH sends
56 | clone packet with TAS flag to

secondary PDH

|
| <>
Secondary PDH on receiving
58—J—> packet transitions from
|

passive to active mode

! <

] Secondary PDH responds
60 —’I back to primary PDH

I
I
I
I
I
|
|
!
| T)
1
|
o4
|
I
L

| Primary PDH transitions from
70; Forward

sz—|—> active to passive-forward
mode mode

Disable forward mode in
primary processor agent

I ; Enable forward mode in
64 I primary processor agent

Primary PDH transitions from
BS-Lb passive-forward mode to

I passive mode

| ~ 5

I Program fabric abstraction
66— blocks to route traffic to

I secondary MA

d with no new
packets?

U.S. Patent

74\

Dec. 8, 2015 Sheet 3 of 4

D
!

78 ——p

Sender sends R/W request
packet to primary processor
agent in clone mode

2l

80—

Primary processor agent sends
packet to primary PDH

<

82—

Primary PDH performs clone

<

84—»

Primary PDH sends clone to
secondary PDH

<

86 —p{ Secondary PDH satisfies request

<

88—

Secondary PDH responds to
primary PDH

<

90 —»

Primary PDH commits data and
forms response for sender

<

92 —p

Primary PDH responds to sender
via the primary processor agent

&
sa—s(_=)

US 9,207,990 B2

FIGURE 3

U.S. Patent

“\

Dec. 8, 2015 Sheet 4 of 4

D
!

100—»

Sender sends R/W request
packet to primary processor
agent in forward mode

<

102—p

Primary processor agent
reformats request and sends to
secondary PDH

!

104—p

Secondary PDH sends response
back to primary processor
agent

<

106 —»

Primary processor agent
reformats response and sends
it back to sender

US 9,207,990 B2

FIGURE 4

US 9,207,990 B2

1
METHOD AND SYSTEM FOR MIGRATING
CRITICAL RESOURCES WITHIN
COMPUTER SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

FIELD OF THE INVENTION

The present invention relates to computer systems and
methods of operating such systems and, more particularly,
relates to the shifting of certain significant or critical system
resources within such computer systems.

BACKGROUND OF THE INVENTION

As computer systems have become more complex, with
large numbers of processing devices and other hardware
resources, it has become possible for one such computer
system to operate simultaneously as multiple computers,
where each computer has its own operating system. Such is
the case in many server computer systems in particular. In
such systems, although a customer (or operating system) may
perceive a single computer, the portion of the system running
as this single computer (a “partition”) may be distributed
across many different hardware resources that are unaffiliated
with one another and/or in any are separately replaceable
“Field Replaceable Units” (FRUs).

Today’s customers are asking for computer systems that
will allow them to increase their return on their investment by
improving the utilization of their compute infrastructure. In
addition, they are asking for solutions with higher availabil-
ity, serviceability and manageability. In particular, they are
asking for solutions that allow them to be able to replace
failing components of a computer system without bringing
down or rebooting the computer system. Yet with respect to
conventional computer systems such as those discussed
above it often is difficult or impossible to shift the utilization
of hardware resources, or to replace hardware resources,
without bringing down or rebooting the computer systems or
at least individual partitions of the computer systems.

One reason why it is difficult to shift the utilization of
hardware resources, or to replace hardware resources, with-
out bringing down/rebooting a computer system is that such
hardware resources provide certain functional resources (for
example, real-time counters) that the operating system(s)
and/or partition(s) of the computer system tend to rely upon in
order to work properly, and that can be referred to as “critical”
resources. Because some or all of these critical resources are
necessary or at least desirable for proper operation, in order to
achieve successful shifting of hardware resources generally,
these critical resources must also be shifted. Yet conventional
computer systems, including many of today’s cellular mid-
range and high-end servers, face several limitations relating
to the shifting of such critical resources.

More particularly, many OS-critical resources reside at
architected addresses (such as the boot vector) that are “root
resources”, which are described to the OS or abstracted from
the OS by firmware interfaces. Because many conventional
cell-based servers map these root resources to fixed physical
paths leading to specific, fixed “root” cells, conventional
operating systems running on such servers cannot handle the

10

20

25

30

40

45

55

60

2

removal, loss or modification of the root cells, at least not
without bringing down the partition(s) supporting those oper-
ating systems.

Further, in order for the shifting of such root resources at
root cells to occur in a manner that would not require bringing
down a partition, such shifting would need to happen in a
manner that did not involve the operating system, such that
the operating system was unaware of and not impacted by
such shifting. Yet many conventional approaches for shield-
ing an operating system from critical resources typically
require full machine virtualization at a software level. Such
virtualization can often result in lower performance (e.g.,
some cycles that could otherwise be given to the application
are instead given to the process virtualizing the machine), and
also may be inconsistent with providing electrical isolation
and/or may be tied to specific operating systems or versions
thereof.

For at least the above reasons, it would be advantageous if
an improved method and system for shifting critical (or other
significant or desirable) resources within a computer system
could be developed that, in at least some embodiments, was
consistent with the shifting and/or replacement of hardware
resources such as processing devices within a computer sys-
tem. Further, it would be advantageous if in at least some
embodiments such improved method and system for shifting
critical (or other significant or desirable) resources was con-
sistent with the shifting/replacement of hardware resources in
a manner that did not require bringing down/rebooting of the
overall system or modifying the operating system (or system
partition).

SUMMARY OF THE INVENTION

In atleast some embodiments, the present invention relates
to a method of migrating at least one critical resource during
amigration of'an operative portion of a computer system. The
method includes (a) sending first information constituting a
substantial copy of a first of the at least one critical resource
via atleast one intermediary between a source component and
a destination component. Further, the method also includes
(b) transitioning a status of the destination component from
being incapable of receiving requests to being capable of
receiving requests, and (c) re-programming an abstraction
block to include modified addresses so that at least one
incoming request signal is forwarded to the destination com-
ponent rather than to the source component.

Additionally, the present invention in at least some
embodiments relates to a method of shifting at least one
critical resource of a computer system in conjunction with a
partition migration of the computer system. The method
includes providing first and second cells of the computer
system, where each of the cells includes a respective process-
ing device, a respective agent component, and a respective
additional component that is capable of supporting the at least
one critical resource. The method also includes determining
that the shifting of the at least one critical resource is neces-
sary or desirable, and copying the at least one critical resource
from the additional component of the first cell to the addi-
tional component of the second cell. The method additionally
includes reconfiguring the agent component of the first cell so
that incoming messages are forwarded to the additional com-
ponent of the second cell via the agent component of the
second cell rather than to the additional component of the first
cell.

Further, the present invention in at least some embodi-
ments relates to a system for migrating at least one critical
resource during a migration of an operative portion of a com-

US 9,207,990 B2

3

puter system. The system includes an intermediary fabric
component, first and second agent components coupled by
way of the intermediary fabric component, and first and sec-
ond additional components each of which is capable of sup-
porting the at least one critical resource. A first of the at least
one critical resources supported by the first additional com-
ponent is capable of being substantially copied to the second
additional component via the first and second agent compo-
nents and the intermediary fabric component.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows in schematic form components of a computer
system having multiple cells that are in communication with
one another, in accordance with one embodiment of the
present invention;

FIG. 2 is aflowchart showing exemplary steps of operation,
which in particular relate to a migration of critical resources
within the computer system of F1G. 1, in accordance with one
embodiment of the present invention;

FIG. 3 is aflowchart showing exemplary steps of operation,
which in particular relate to a first mode of handling read/
write requests as part of the migration of critical resources of
FIG. 2, in accordance with one embodiment of the present
invention; and

FIG. 41s aflowchart showing exemplary steps of operation,
which in particular relate to a second mode of handling read/
write requests as part of the migrating of critical resources of
FIG. 2, in accordance with one embodiment of the present
invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring to FIG. 1, components of an exemplary computer
system 1 in accordance with at least one embodiment of the
present invention are shown in a simplified schematic form.
As shown, the computer system 1 includes a partition 2 hav-
ing two field replaceable units (FRUs) or “cells”, namely, a
first cell 4, a second cell 6, and a fabric 8 to facilitate com-
munication between those two cells. The two cells 4, 6 can be
understood to be formed on two separate printed circuit
boards that can be plugged into, and connected by, a back-
plane (on which is formed or to which is coupled the fabric 8),
Although the computer system 1 of the present embodiment
includes only the single partition 2 having the first and second
cells 4 and 6, it is nevertheless intended to be representative of
a wide variety of computer systems having arbitrary numbers
of partitions with arbitrary numbers of cells and/or circuit
boards. For example, in other embodiments, multiple parti-
tions, each having a single cell or possibly more than two
cells, can be present and coupled with one another by way of
the fabric 8. Alternate embodiments can also have different
configurations of resources on a cell.

In at least some embodiments, the computer system 1 is a
sx1000 super scalable processor chipset available from the
Hewlett-Packard Company of Palo Alto, Calif., on which are
deployed hard partitions (also known as “nPars™) on one of
which exist the cells 4, 6. Hard partitions allow the resources
of'a single server to be divided among many enterprise work-
loads and to provide different operating environments (e.g.,
HP-UX, Linux, Microsoft Windows Server 2003, Open-
VMS) simultaneously. Such hard partitions also allow com-
puter resources to be dynamically reallocated. Although the
computer system 1 can be the super scalable processor

10

35

45

4

chipset mentioned above, it need not be such a chipset and
instead in other embodiments can also take a variety of other
forms.

Each of'the cells 4, 6 is capable of supporting a wide variety
of hardware and software components. More particularly as
shown, each of the cells 4, 6 includes a respective central
processing unit (CPU) 10, 24. The CPUs 10, 24 of the parti-
tion 2 formed by the cells 4, 6 support an operating system
(OS) of the partition, as well as perform (or at least are
capable of performing) one or more applications. Addition-
ally, each of the cells 4, 6 includes a respective agent compo-
nent, namely a processor agent 16 on the cell 4 and a proces-
sor agent 30 on the cell 6. Additionally, respective Processor
Dependent Hardware (PDH) blocks 14, 28 and respective
memory blocks 12, 26 are present on each of the respective
cells 4, 6. In other embodiments, one or more of the cells 4, 6
can include components other than or in addition to those
mentioned above. Further, in the present partition 2 having
the cells 4, 6, the cell 4 serves as a “root” or primary cell that
hosts “critical” resources that are necessary for (or, alterna-
tively, at least significant or desirable in relation to) the func-
tioning of the partition 2. These critical resources, which are
described in more detail below, in particular are hosted/stored
within the PDH block 14 of the primary cell 4.

The respective CPUs 10, 24 typically are formed on chips
that are coupled by way of electrical connectors to the respec-
tive circuit boards corresponding to the respective cells 4, 6.
Although the CPUs 10, 24 are intended to be representative of
a wide variety of processing devices, in the present embodi-
ment, the CPUs 10, 24 are Itanium processing units as are
available from the Intel Corporation of Santa Clara, Calif. In
other embodiments, one or more of the CPUs 10, 24 can take
other forms including, for example, Xeon and Celeron also
from the Intel Corporation. In alternate embodiments, one or
more of the CPUs can be another type of processing unit other
than those mentioned above including a wide variety of pro-
cessing units available from the Advanced Micro Devices
(AMD) of Sunnyvale, Calif. Different CPUs on a given cell,
and/or on different cells need not be the same but rather can
differ from one another in terms of their types, models, or
functional characteristics. Also, although the present embodi-
ment has only the single CPUs 10, 24 each having a single
CPU core on each of the cells 4, 6 respectively, the present
invention nevertheless is also intended to encompass embodi-
ments in which cells and/or partitions have more than one
CPU, as well as embodiments in which one or more indi-
vidual CPUs have more than one (rather than merely one)
CPU core.

With respect to the memory blocks 12, 26, they can take a
variety of different forms depending upon the embodiment.
For example, in one embodiment of the present invention, the
memory blocks 12, 26 can be divided into multiple memory
segments organized as dual in-line memory modules
(DIMMs). In other embodiments, the memory blocks 12, 26
can include a main memory formed from conventional ran-
dom access memory (RAM) devices such as dynamic random
access memory (DRAM) devices. In alternate embodiments,
the memory 12, 26 can be formed from static random access
memory (SRAM) devices such as cache memory, either as a
single level cache memory or as a multilevel cache memory
having a cache hierarchy. In further embodiments, the
memory 12, 26 can be formed from other types of memory
devices, such as memory provided on floppy disk drives,
tapes and hard disk drives or other storage devices that can be
coupled to the computer system 1 of FIG. 1 either directly or
indirectly (e.g., by way of a wired or wireless network) or
alternatively can include any combination of one or more of

US 9,207,990 B2

5

the above-mentioned types of memory devices, and/or other
devices as well. Notwithstanding the fact that in the present
embodiment, the respective memory blocks 12, 26 are shown
to be in direct communication with the respective processor
agents 16, via communication links 22 and 36, respectively,
the present invention is also intended to encompass other
embodiments with alternate arrangements. For example, in
some such embodiments, the respective memory blocks 12,
26 of the respective cells 4, 6 are in direct communication
with the respective CPUs 10, 24 (or portions of those CPUs,
such as sockets or cores) of those respective partitions, rather
than in direct communication with the respective processor
agents of those cells.

As for the respective processor agents 16, 30 on the cells 4,
6 respectively, each of these serves as an intermediary that is
in communication with all of the other respective components
of the respective cells as well as in communication with the
fabric 8 (and thus capable of communication with each other).
More particularly, the respective processor agents 16, 30 are
capable of communicating with the respective PDH blocks
14, 28 by way of respective communication links 20, 34, with
the respective CPUs 10, 24 via respective communication
links 18, 32, and with the respective memory blocks 12, 26 via
the respective communication links 22, 36. Additionally, the
processor agents 16, 30 have several other purposes relating
to the identification, configuration, controlling and observa-
tion of the partition 2 and its resources such as the CPUs 10,
24 or other resources.

More particularly, the processor agents 16, 30 serve to
either directly manage, or serve as the interface by which are
managed, the partition critical resources within the respective
PDH blocks 14, 28, particularly at times of on-line repair,
upgrades and/or dynamic partitioning of the resources
located on the root cell of the partition 2. In this regard, the
processor agents 16, 30 are able to manage migration of
partition critical resources out of one cell and into another, as
discussed further below. It is typically intended that such
migration of critical resources should proceed without any
involvement or awareness on the part of the OS. Also, the
processor agents 16, 30 include address abstraction tables or
blocks such that abstract or virtual addresses suitable for
communicating within the partition can be converted into real
physical fabric addresses suitable for communicating across
the fabric, addressing locations such as memory locations or
locations associated with the PDH blocks 14, 28. In addition,
the processor agents 16, 30 include reverse abstraction tables
or blocks such that the real physical fabric addresses suitable
for communicating across the fabric can be converted back
into abstract or virtual addresses suitable for communicating
within the partition. In general, the abstraction blocks are
pre-programmed with the abstractions during the configura-
tion of the partition 2, as well as during the process of tran-
sitioning critical resources as discussed below.

As for the PDH blocks 14, 28, each of these blocks con-
tains, or is capable of containing, partition critical resources.
Such critical resources, which also can be referred to as root
resources, are critical for the proper functioning of the com-
puter system 1 and partition 2 and can include a variety of
resources that are necessary for performing various opera-
tions. For example, the critical resources can include system
firmware entities such as boot read-only memory (ROM) and
other boot resources, system health resources and/or identi-
fication resources (e.g., identification codes). Also for
example, the critical resources can include OS/partition enti-
ties such as input/output (1/0) Streamlined Advanced Pro-
grammable Interrupt Controller (SAPICs), Advanced Con-
figuration and Power Interface (ACPI) functions or fixed

10

15

20

25

30

35

40

45

50

55

60

65

6

register sets, timers, clocks (or times), etc. While some of the
critical resources are used by system firmware, others are
used by the OS of the partition. Also, while some of the
critical resources are autonomously updated, others are
updated by way of the system firmware and/or OS. As dis-
cussed further below, in some circumstances some of the
critical resources experience “side-effects” when the
resources are read or written to.

In at least some embodiments, certain of the critical
resources within the respective PDHs 14, 28, when working
in conjunction with firmware running in the computer system
1, and with the respective processor agents 16, 30 (and pos-
sibly other components), form a complex management intel-
ligence (CMI) that is capable of identifying, managing, con-
figuring and observing the various resources within the
computer system 1 that are associated with the partition 2 and
possibly one or more other partitions of the computer system.
Such a CMI generally operates in isolation from the OS(s)
running on the partition(s), such that the OS(s) are unaware of
the CMI. As will be discussed further below, each of the cells
4, 6 of the multi-cell partition 2 of FIG. 1 is capable of
containing critical resources used by the partition 2 during a
normal mode of operation of the partition 2. In particular, the
critical resources reside within the PDH blocks 14, 28 of the
respective cells 4, 6.

Under certain circumstances it becomes desirable to
migrate the critical resources from the PDH block of one cell
to the PDH block of an alternate or secondary cell. To achieve
such a migration, it is further desirable that a “blank” resource
in a PDH containing no running partition-critical processes
exist within the secondary cell. During migration, running
critical resources from the migrating PDH block are trans-
ferred to the PDH block of the secondary cell. In the exem-
plary embodiment shown in FIG. 1, the migrating PDH block
can be, for example, the PDH block 14 of the cell 4, while the
recipient PDH block can be, for example, the PDH block 28
of the cell 6. Such migration of the PDH block is achieved
through the use of the processor agents 16, 30 and associated
CMI. Additionally, in support of migration, and located
within the respective PDH blocks 14, 28 are interrupt accu-
mulators 15, 17 respectively. Each of the interrupt accumu-
lators 15 and 17 are used to accumulate interrupts generated
during the migration of the autonomously updated resources,
as will be described in more detail below.

Notwithstanding the aforementioned exemplary manner of
migration corresponding to FIG. 1 in which the critical
resources of the PDH block 14 are migrated to the PDH block
28, it should be understood that a variety of difterent manners
of' migration are possible depending upon the embodiment or
circumstance. For example, in another circumstance, it is
possible that one critical resource will be migrated from the
PDH block 14 to the PDH block 28 while another critical
resource will be migrated in the opposite direction. Addition-
ally for example, in another circumstance it is possible that
one critical resource will be migrated to or from another PDH
block associated with another cell (not shown) from or to one
of the PDH blocks 14, 28. Generally speaking, critical
resources can be farmed to many different PDHs on many
different cells. Moving critical resources from one PDH
block to another can happen from multiple cells to multiple
cells, in the process of clearing out just one cell for deletion
from the partition (or repair). At the same time, it should be
further noted that, in all of these exemplary circumstances,
migration of a given resource from one PDH block to a

US 9,207,990 B2

7

recipient PDH block is predicated upon the recipient PDH
block having a blank “resource” capable of receiving the
running resource.

With respect to the fabric 8, it is a hardware device (such as
a crossbar switch) that can be formed as part of (or connected
to) the backplane of the computer system 1. The cells 4, 6 are
connected to the fabric 8 during configuration when those
cells are installed on the partition 2 within the computer
system 1. The fabric 8 serves as a global intermediary for
communications among the various resources of the com-
puter system 1 during operation of the computer system,
including resources associated with different partitions of the
computer system. In order for signals provided to the fabric 8
to be properly communicated via the fabric to their intended
destinations, in the present embodiment, the signals must take
on fabric (or global) addresses that differ from the partition
addresses employed by the signals when outside of the fabric.
Although as shown in FIG. 1 the processor agents 16, 30 are
linked by way of the fabric 8, in the present embodiment an
additional or “out-of-band” fabric 38 also links the PDH
blocks 14, 28 of the different cells 4, 6.

To improve availability and serviceability of partitions of
the computer system 1 such as the partition 2, it is desirable to
continue to run a given partition even when a component on a
cell is hosting all or some of the partition critical resources
and the cell requires replacement. Likewise, it is desirable to
continue to run a given partition as resource needs evolve or
change, such that it becomes appropriate to share the
resources of a given cell among multiple partitions, becomes
appropriate to expand the number of cells being utilized by a
given partition, or becomes appropriate to shift the given
partition from utilizing the resources of one cell to utilizing
the resources of another cell. In accordance with at least some
embodiments of the present invention, when such migrations
of resources associated with a given partition occur, one or
more of the critical resources of a PDH block such as the PDH
block 14 of the primary cell 4 can be migrated (e.g., moved)
to a different PDH block such as the PDH block 28. By
migrating the critical resources, it is possible to avoid stalling
or shutting down a partition of the computer system such as
the partition 2.

Turning to FIG. 2, a flowchart 40 is provided that shows
exemplary steps of such a migration operation in which criti-
cal resources found on a primary PDH block of a first cell,
namely, the PDH block 14 of the primary cell 4 of FIG. 1, are
migrated to a secondary PDH block of a second cell, namely,
the PDH block 28 of the cell 6. As shown, the process begins
at a step 42. Prior to the execution of the flowchart 40 (e.g.,
before the time of the step 42), the system operates in a normal
mode of operation and some if not all of the critical resources
for the partition 2 are located at the primary PDH block 14 of
the primary cell 4. Accessing of those critical resources dur-
ing the normal mode, for example, by way of an OS associ-
ated with the partition 2 and running on the CPU 10 of the
primary cell 4, occurs by way of communication signals that
proceed between that CPU and that PDH block by way of the
communication links 18, 20 and the processor agent 16 of the
primary cell. However, at the step 42, an event or circum-
stance occurs (e.g., a device failure or a change in resource
needs) as a result of which it becomes necessary or desirable
to perform a migration of the critical resources of the primary
PDH block 14 to another location, which in this example is
the secondary PDH block 28.

After starting at the step 42, the CMI (e.g., as formed by
firmware, the processor agent 16 and PDH 14 of the primary
cell 4) at a step 44 determines whether there exists a need for
amigration of the critical resources of the primary PDH block

20

35

40

45

8

14. For example, the CMI can detect a need for on-line repair
of'a component of the computer system 1, a need for upgrad-
ing of a portion of the computer system, or a need for dynamic
partitioning (e.g., a need to adjust the assignment of resources
to one or more partitions of the computer system). Once the
CMI determines that a need for a migration of critical
resources exists, then at a step 46 the CMI (or some other
mechanism) identifies a secondary cell that is an appropriate
destination for the critical resources being migrated. The
secondary cell, which in the present example is the cell 6,
typically will have a respective secondary PDH block such as
the PDH block 28 that can be the recipient of the critical
resources. Upon the secondary cell and PDH block being
identified, some, if not all, of the PDH block components are
then placed in a “passive” mode implying that these PDH
block components are not being used as functional PDH
block components, and that they are to be the new hosts for the
critical resources.

Upon the making of the determinations at the steps 44 and
46, the migration process then begins in earnest at a step 48.
Asillustrated in FIG. 2 by first, second and third dashed boxes
47, 53 and 63, respectively, and further set forth in Table 1
below, the overall migration process can be understood to
encompass first, second and third system modes in between
times at which the partition 2 leaves (e.g., at the step 46) and
later returns (e.g., at a step 70 discussed below) to a normal
mode of operation. As shown, these first, second and third
modes can be referred to as a clone mode, a transfer of active
status (TAS) mode, and a forward mode. Generally speaking,
during the clone mode, a primary objective is to build a
duplicate of the critical resources of the primary PDH block
14 in the secondary (target) PDH block 28. Subsequently
after the clone has been built and verified, the primary PDH
block 14 is decommissioned from the partition 2 in favor of
the secondary PDH block 28 during the TAS mode. Then,
after operation in the TAS mode, operation in the forward
mode occurs in which the primary PDH block 14 is disabled
and all requests are handled directly by the secondary PDH
28.

Further as shown, each of these three modes of operation
includes several steps of operation, and can be understood to
encompass certain sub-modes of operation that more particu-
larly pertain to the operational status of certain components of
the computer system 1 involved in the migration. More par-
ticularly as shown in Table 1, the respective processor agents
16, 30 of the respective cells 4, 6 as well as the primary and
secondary PDH blocks 14, 28 need not share the same opera-
tional status as one another during the clone, TAS and forward
modes, nor need those devices be in communication with one
another or even be aware of the operational status of one
another during those modes. For example, during the clone
mode, while each of the primary processor agent 16, the
primary PDH 14 and the secondary PDH 28 is involved in this
mode of operation, the secondary processor agent 30 is
unaware of the operation in this mode. Also as already noted
above, the steps associated with the migrating of critical
resources in the present embodiment are “invisible” to the OS
associated with the partition 2. That is, the OS associated with
the partition 2 with respect to which the migration is occur-
ring is not aware of or affected by the performance of these
steps, and can continue to operate during and after the migra-
tion of the critical resources of the primary PDH block 14 to
the PDH block 28 as if nothing had changed.

US 9,207,990 B2

9
TABLE 1
Primary Secondary Primary Secondary
System Agent Agent PDH PDH
Row Normal n/a n/a Active Passive
Row Clone(part Clone n/a Active Passive
Row Clone(part Clone n/a Active Clone Passive
Row TAS(partA) Clone n/a Active TAS Passive
Row TAS(part B) Clone n/a Active TAS Active
Row TAS(partC) Clone n/a Passive-Forward ~ Active
Row Forward Forward n/a Passive Active
Row Normal n/a n/a Passive Active

Referring still to FIG. 2, steps 48 through 52 represent
operations performed by the computer system 1 when in the
clone mode of the box 47. More particularly, the step 48
involves enabling the clone mode within the primary proces-
sor agent 16 such that the system mode changes from the
normal mode to the clone mode, and more particular to a part
A of the clone mode as shown in row 2 of the Table 1. Next,
at the step 50, the primary PDH block 14 is placed in an active
clone mode as shown by the row 3 of the Table 1, such that the
computer system 1 can be said to enter a second portion of the
clone mode, namely, part B of the clone mode. When the
processor agent 16 enters the clone mode and the primary
PDH block 14 is placed in an active clone mode, it becomes
possible to clone the primary PDH block 14 to the secondary
PDH block 28 (e.g., to copy the critical resources of the
primary PDH block to the secondary PDH block).

When in the active clone mode, the primary PDH block 14
is actively participating in the operation of the partition 2, and
is migrating the critical resources available at that PDH block
to the secondary PDH block 28, while at the same time also
tracking the state of the OS. During this time, it is still the
primary PDH block that makes the decisions, on a resource-
by-resource (and possibly partition-by-partition) basis, as to
what action should be taken in response to any given request
to the PDH block. It should further be noted that, throughout
the operation of the system in the clone mode (including both
parts A and B of the clone mode), those components of the
secondary PDH block 28 that are pending targets of the
migration remain in a passive mode such that they are not
capable of responding to requests, albeit they are able to
receive information by which the critical resources of the
primary PDH block 14 are cloned to the secondary PDH
block 28.

Then, at the step 52, the critical resources of the primary
PDH block 14 are cloned to the secondary PDH 28. Request
packets from the primary CPU 10 arrive at the primary PDH
block 14 via the primary processor agent 16, which resolves
abstract (e.g., partition) addresses used by the CPU into real
fabric addresses suitable for the PDH block 14. As the request
packets arrive at the primary PDH block 14, the PDH block
determines the proper data/address update for cloning to the
secondary PDH block 28, and then sends a clone of the
requested packet via the fabric 8 to the secondary PDH block
(more particularly, the clone packet is sent to the secondary
PDH block via each of the communication links 20, 34, each
of the primary and secondary processor agents 16, and the
fabric 8). Once the clone packet reaches the secondary PDH
block 28, that block performs the clone. Finally, after the
cloning has occurred, the secondary PDH block 28 then sends
a response back to the primary PDH block 14, which in turn
sends a response to the requesting CPU 10 such that the
access is retired.

During the cloning process represented by the step 52, the
primary PDH block 14 operates to mirror accesses that it

10

15

20

25

30

35

40

45

50

55

60

65

10

receives from the CPU 10 to the secondary PDH block 28 so
that latter block remains current with the former block. The
exact manner of operation of the secondary PDH block 28 in
responding to requests that it receives is discussed in further
detail with respectto FIG. 3, and can vary depending upon the
type of request. For example, read and write requests are
handled differently from one another as explained in greater
detail below. Generally speaking, however, for a PDH read/
write request from a CPU, the data is first read in the primary
PDH and then written to the secondary PDH, all before the
CPU is released to perform another transaction. This effec-
tively clones the information from one PDH to another. It is
also possible for the CMI to effect a complete clone of the
entire primary PDH block 14, by walking through all the
primary PDH addresses and performing a clone mode read
operation. In this manner, the data is updated both in the
primary and secondary PDH blocks 14 and 28 respectively,
effectively keeping the data between the primary and the
secondary in synchronization, and coherent, when the OS or
other fabric-based writes attempt to update resources.

When all resources from the primary PDH block 14 have
been migrated to the secondary PDH block 28 in this manner,
the computer system 1 then switches to the TAS mode of the
box 53. Operation in this mode, which includes steps 54
through 62 of the flowchart 40, generally involves transition-
ing from operating the primary PDH block 14 in an active
manner to operating the secondary PDH block 28 in an active
manner. More particularly with respect to the step 54, that
step involves enabling the active TAS mode within the pri-
mary PDH block 14, such that the overall system mode
changes from the clone mode to a part A of the TAS mode as
shown in row 4 of the Table 1.

Next, at the step 56, whenever the primary PDH block 14
receives a transaction for the components of the PDH being
migrated, either from the CMI, or from any CPU in the
partition (such as the CPUs 10 or 24), the primary PDH block
14 initiates a transfer of active status from itself to the sec-
ondary PDH block 28 by way of the fabric 8 (and also the
processor agents 16, 30 and communication links 20, 34). In
doing this, the primary PDH block 14 acts as though it were
operating in the active clone mode except insofar as the pri-
mary PDH block attaches an additional TAS flag to the cloned
transaction sent to the secondary PDH block 28. Upon receiv-
ing the clone transaction with the TAS flag at the secondary
PDH block 28, that block at the step 58 then transitions from
passive status to active status, such that the system mode
changes to the part B of the TAS mode as shown in row 5 of
the Table 1. As part of this transition, the secondary PDH
block 28 updates its resources and begins tracking the OS
state. At this point for a short period, both the primary and
secondary PDH blocks 14, 28 respectively are both in the
active mode (active TAS mode in the case of the primary PDH
block) and are tracking the OS state.

Next at a step 60, the secondary PDH block 28 responds
back to the primary PDH block 14 after fulfilling the clone
request and transitioning to its active mode. Upon the
response arriving at the primary PDH block 14, that PDH
block then changes from its active (active TAS) mode to a
passive-forward mode at the step 62, such that the overall
system mode changes to a part C of the TAS mode as shown
in row 6 of the Table 1. After this has occurred, the primary
PDH block 14 sends a response to the requesting CPU 10 such
that the access is retired. The system mode, however, remains
in the part C of the TAS mode until all the critical resources of
the primary PDH block 14 have been cloned and translated to
the part C of the TAS mode. While waiting for the last critical
resource to transition through the part C of the TAS mode,

US 9,207,990 B2

11

accesses to those resources that have already been transi-
tioned still arrive at the primary processor agent 16 and the
primary PDH block 14 and are handled by the PDH block as
indicated above. Subsequent to transitioning all of the critical
resources of the primary PDH block 14 to the part C of the
TAS mode, the primary PDH block does not actively partici-
pate in the operations of the partition 2 or track the OS state.

Although the above discussion describes the switching of
the secondary PDH block 28 from its passive mode to its
active mode as if it occurs in a single operation in response to
a single clone signal, this process can also occur in a recurrent
or repeated manner on a resource-by-resource basis as
requests for different resources are received by the primary
PDH block 14 and subsequently sent to the secondary PDH
block 28. Also, it should be mentioned that the OS is unaware
of the transitions occurring at the PDH blocks 14, 28 during
the TAS mode. Further, throughout the TAS mode (including
the parts A, B and C of the TAS mode), the primary processor
agent 16 remains in its clone mode unaware of the transitions/
operations being performed by the primary and secondary
PDH blocks 14, 28.

Upon the completion of the step 62, the computer system 1
switches to the forward mode represented by the box 63,
which includes steps 64 through 68 shown in FIG. 2. In the
forward mode, the primary processor agent 16 and the pri-
mary PDH block 14 are disabled from active participation in
the operations of the partition 2. Any access signal that would
have previously been directed to the formerly-active primary
PDH block 14 is forwarded by the primary processor agent 16
to the secondary PDH block 28 rather than to the primary
PDH block. More particularly, the step 64 involves changing
the primary processor agent 16 from the clone mode to the
forward mode, such that the overall system mode transitions
to the forward mode as shown in row 7 of the Table 1. Further
at the step 66, the abstraction blocks within all processor
agents within the partition, such as the processor agent 16, are
re-programmed to route traffic originally destined for the
primary PDH block 14 to the secondary processor agent 30
(and thus to the secondary PDH block 28) instead.

As a result, when the computer system 1 is in the forward
mode, signals from any CPU (such as the CPU 10) that
originally would have been directed to the primary PDH
block 14 instead now proceed, via the fabric 8 (and the pro-
cessor agents 16, 30), to the secondary PDH block 28.
Responses from the secondary PDH block 28 also proceed in
a reverse manner back to the requesting CPU (such as the
CPU 10). As in the case of the handling of signals in the clone
mode, the handling of signals in the forward mode can depend
somewhat upon the type of signal. For example, read signals
from the CPU 10 can be handled differently than write sig-
nals, as discussed in further detail below with respect to FIG.
4.

Subsequent to the re-programming of the abstraction
blocks, the process advances to a step 68, at which a deter-
mination is made as to whether to disable the critical
resources migration process. In particular, after all abstrac-
tion tables have been re-programmed at the step 66, it is
determined whether a sufficient time has elapsed to ensure
that all in-flight packets have either timed-out or reached their
destination. If such a time period has not yet occurred, the
process stays at the step 68. However, assuming that such a
time period is determined to have elapsed in the step 68, then
the forward mode is disabled at a step 70, and the overall
system mode changes back to the normal mode as shown in
row 8 ofthe Table 1. Once in the normal mode, all requests by
CPUs (such as the CPU 10) to access resources are directed
via their respective processor agents (such as the processor

10

15

20

25

30

35

40

45

50

55

60

65

12

agent 16) and the fabric 8 to the PDH serving the critical
resources (such as PDH 28), via its associated processor agent
(such as processor agent 30). Thus, as a result of the process
of FIG. 2, the critical resources of the primary PDH block 14
are fully migrated to the secondary PDH block 28 such that
the secondary PDH block can completely take the place ofthe
primary PDH block, without any knowledge by or involve-
ment of the OS. The process thus ends by at a step 72.

Turning now to FIG. 3, an additional flowchart 74 shows in
more detail exemplary steps of operation of the computer
system 1 relating to the handling of a read or write request by
the processor agents 16, 30 in the clone mode, which steps can
be generally understood to correspond to (and be performed
as part of) the step 52 of FIG. 2. As shown, after starting at a
step 76, at a step 78 a sender (e.g. the CPU 10 or any other
resource on the partition 2) desiring read/write access to a
resource within the primary PDH block 14 sends a read/write
request packet to the primary processor agent 16 of the pri-
mary cell (cell 4) that is destined for the primary PDH block
14. When making the request, the sender typically is not
aware as to whether a migration of critical resources from the
primary PDH block 14 to another PDH block such as the
secondary PDH block 28 is underway.

Next at a step 80, the primary processor agent 16 upon
receiving the request packet throttles accesses for that parti-
tion to one outstanding access at a time while retrying other
requests to the same address space, in order to maintain a
coherent view of the computer system 1. Additionally, the
primary processor agent 16 routes the packet off to the pri-
mary PDH block 14 by way of the dedicated communication
link 20. Further, at a step 82 the primary PDH block 14 then
performs a clone of the request to be sent over to the second-
ary PDH block 28. More particularly, at that step the primary
PDH block 14 examines the request and determines how to
perform the clone for the addressed resource. A clone mecha-
nism that is generally suitable for a generic read/write
resource is to clone a write for either a write or read request.
Further, for aread-type request in particular, the primary PDH
block 14 can perform a read of the resource and store the read
data for later transmission to the sender (such as the sender/
CPU making the request).

As mentioned above, different types of requests (e.g., read
and write requests) in at least some circumstances are handled
differently from one another when the computer system 1 is
operating in the clone mode. More particularly, while the
above-described mechanism is suitable for many read/write
requests, itis not suitable for all such requests insofar as some
resources have “side effects” such that special care should be
exercised when performing migration of those resources. For
example, one type of special case is a “read” side effect. With
this type of a side effect, a read operation on a resource
corrupts the resource for any future operations. Resources
that are subject to read-side-effects can include, for example,
stacks. Further for example, one such read side effect occurs
when the OS will expect a certain value, but the migration
process will corrupt the resource in performing a read to
effect the migration. To avoid corruption that might otherwise
occur due to such read side effects, either all read-side-effect
resources in the primary PDH block 14 should be abolished,
oraregister address can be used to allow non-destructive state
capture that allows migration via reads, without corruption of
the resource. In some cases, the PDH hardware and firmware
should employ an algorithm (such as side-door addresses) to
create the clone.

Additionally, some resources also or instead have “write”
side effects. As noted above, the generic cloning mechanism
results in a write to the resource in the secondary PDH block

US 9,207,990 B2

13

28 irrespective of whether the initial request to the primary
PDH block 14 was a read request or a write request. However,
resources with write side-effects, such as elements of the
ACPI general purpose events (GPEs), are unable to tolerate
such behavior and still maintain a valid clone. For resources
such as these, the PDH hardware and firmware again can
employ an algorithm, possibly including side-door addresses,
to create the clone in the secondary PDH block 28 without
using the normal functional destructive write address.

In addition to resources that have read or write side effects,
still other resources can be referred to as autonomously
updated resources. These can include, for example, virtual
real time counters, watch dog timers, ACPI resources, high
precision event timers (HPETs), I/O SAPICs, console/text/
raw virtual Universal Asynchronous Receiver Transmitters
(UARTs), and Intelligent Platform Management Interface
(IPMI) block tables, among others. In the present embodi-
ment, the handling of such autonomously updated resources
during PDH migration varies with the different stages of the
PDH migration, For example, in the clone mode when an
autonomously updated resource is cloned from the primary
PDH block 14 to the secondary PDH block 28, duplicate
interrupts can be issued by the resource existing simulta-
neously on both the primary and the secondary PDH blocks.
To avoid such duplicate interrupts from being issued during
the clone mode of the PDH migration, all interrupts are pri-
marily serviced by the PDH block that is in an active mode
and serving as the functional PDH block, which in the present
case is the primary PDH block 14.

In contrast to the clone mode where interrupts are gener-
ated only by the primary PDH block, in the TAS stage where
both primary and secondary PDH blocks 14 and 28 respec-
tively are simultaneously active for a short period of time,
each ofthose PDH blocks can generate (or at least are capable
of handling) interrupts. To avoid duplicate interrupts from
being issued by one autonomously-updated resource, all
interrupts are accumulated within the respective interrupt
accumulators 15, 17 of the respective PDH blocks 14, 28
during the TAS stage of the PDH migration. In particular, as
interrupts are issued in the TAS stage by autonomously
updated resources, such interrupts, rather than being serviced
right away, are instead directed to the respective interrupt
accumulators 15, 17 of the respective PDH block 14, 28 for
temporary accumulation. The accumulated interrupts within
both the primary and the secondary PDH blocks 14, 28
respectively are eventually read by the firmware, which
resolves duplicate interrupts to a single interrupt that is sub-
sequently issued. Additionally, with respect to at least some
autonomously-updated resources such as timers or areal time
clocks (RTCs), the migration process can further include the
performing of fabric flight-time calculations for a few packets
from the primary PDH block 14 to the secondary PDH block
28 and back, in order to determine the proper offset to add to
the timer or RTC in order to create a coherent clone.

It should be further noted that, given the variety of types of
critical resources that can be found in the PDH blocks 14, 28,
in order to perform the migration of critical resources, the
processor agents 16, 30 in at least some embodiments include
specialized hardware by which the processor agents recog-
nize different characteristics of different types of critical
resources. For example, cell IDs and Control Status Registers
(CSRs) do not require migration, while the architected PDH
external registers should be migrated. Also, among the many
different critical resources that are potentially allocated to a
given PDH block, some resources are considered owned by
the OS, while some are owned by the CMI and still others are
invisible to the OS.

20

25

30

40

45

14

In order to perform critical resource migration without
involvement or awareness by the OS, the migration of OS-
visible resources must occur coherently such that the OS does
not notice whether or not it is communicating with the old
PDH or the new PDH. For those resources owned by the CMI,
migration can instead occur slowly behind the scenes (more
particularly, the CMI is free to migrate those resources via the
management fabric (or LAN) 38 or via in-band packets at any
time prior to decommissioning the primary PDH. As for
non-OS visible resources, migration (particularly cloning as
described below) can occur “behind-the-scenes” via the fab-
ric 8 or possibly the out-of-band fabric (or LAN) 38, as
needed. However, in order to ensure that the OS sees a coher-
ent and proper programming model view of the critical
resources that it accesses, the OS-visible resources should be
migrated using fabric-based reads and writes.

Referring still to FIG. 3, subsequent to performing the
cloning operation (either in a generic manner for a standard
read/write request or in a special manner given a special case),
the clone is routed off to the secondary PDH block 28 through
the fabric 8 at a step 84. More particularly, the clone is first
sent over by the primary PDH block 14 to the primary pro-
cessor agent 16, which in turn routes the request off to the
fabric 8 and to the secondary processor agent 30. The second-
ary processor agent 30 then directs the clone to the secondary
PDH block 28. Next, a step 86 is performed in which the
secondary PDH block 28 satisfies the request associated with
the clone received from the primary PDH block 14. As noted
above, typically (e.g., other than in the special cases), the
clone sent by the primary PDH block 14 is a write clone
irrespective of whether the request from the sender was a read
request or a write request. The secondary PDH block 28 upon
receiving the clone commits (e.g., stores) the data present in
the clone. For a read request, the data read by the primary
PDH block 14 from a desired location is sent as part of the
clone, which the secondary PDH block 28 commits. For a
write request, the secondary PDH block 28 commits the data
to the location specified in the clone packet.

Further, at a step 88, having acted in response to the clone,
the secondary PDH block 28 then sends a response back to the
primary PDH block 14 that provided the clone relating to the
original read/write request. This response again is communi-
cated via the fabric 8 and the processor agents 16, 30. The
primary PDH block 14, upon receipt of the response from the
secondary PDH block 28, at a step 90 in turn commits the
write data for a write type request (no specific action is
required for a read type request). Additionally at the step 90,
for both read and write requests, a response packet with the
result of the request is prepared by the primary PDH block 14.
Finally at a step 92, the primary PDH block 14 sends the
response back to the sender via the primary processor agent
16. The request is then considered to be satisfied and the
process ends at a step 94.

Turning to FIG. 4, an additional flowchart 96 is provided
that shows exemplary steps of operation that particularly
relate to handling read/write requests by the primary proces-
sor agent 16 when it (and the overall system) is operating in
the forward mode discussed above with respect to FIG. 2. The
steps shown in FIG. 4 can be generally understood to be
occurring as part of (or subsequent to) the step 66 of FIG. 2.
As shown, after starting at a step 98, the process advances to
a step 100 in which a sender desiring to access a critical
resource of a PDH block sends a read/write request packet to
the primary MA 16 located on the primary cell 4. The sender
can be, for example, the CPU 10 of the cell 4 of FIG. 1, or
potentially another CPU or other resource (typically one that
is in communication with the fabric 8).

US 9,207,990 B2

15

Next, at a step 102, the primary processor agent 16 upon
receiving the request reformats that request packet to note
itself as the sender, and the secondary PDH block 28 as the
destination, and routes the packet to the destination secondary
PDH block by way of the fabric 8 and the processor agent 30.
Further, at a step 104, the secondary PDH block 28 deter-
mines the action to be taken upon receiving the request. This
can depend somewhat upon the type of request. For example,
upon receiving a read request, data is fetched from the loca-
tion specified in the request while, for a write request data is
committed to the location mentioned within the request. Once
the request has been fulfilled, the secondary PDH block 28
sends a response to the primary processor agent 16 (which
had noted itself as the sender) via the fabric 8 and the second-
ary processor agent 30. Subsequently, at a step 106, the pri-
mary processor agent 16 receives the response, reformats it so
as to note the original sender (e.g., the CPU 10) as the sender,
and then sends the response to that original sender, thereby
fulfilling the request in a forward mode. In this manner, all
read and write transactions bypass the primary PDH block 14
and complete at the secondary PDH block 28 only. The pro-
cess then ends at a step 108.

While the processes described above with respect to FIGS.
2, 3 and 4 constitute one example of how critical resources of
a PDH block utilized by the partition 2 within the computer
system 1 can be migrated in a manner consistent with the
proper handling of platform critical resources, and in a man-
ner that does not require rebooting of the computer system or
otherwise affect the OS (or other applications) running on the
partition, the present invention is also intended to encompass
a variety of other processes, including modifications and/or
refinements of the above-described processes. Also, while the
computer system 1 shown in FIG. 1 is one example of a
computer system in which processes such as those of FIGS. 2,
3 and 4 can be performed, the present invention is also
intended to encompass a variety of other computer systems
having different hardware resources and other features than
that of the computer system 1 including, for example, com-
puter systems having more than one partition, more or less
than two cells, and any arbitrary number of cores. Addition-
ally, the printed circuit board(s) on which the cells 4 and 6 are
formed can be understood to mean a module, a blade or
possibly even a cell in other embodiments. Also, each of the
hardware components of the computer system 1 can poten-
tially be formed of Application Specific Integrated Circuit
(ASIC) chips, Very Large Scale Integration (VLSI) chips
and/or Field Programmable Gate Array (FPGA) chips.

16

The particular process steps and stages employed above to
migrate PDH resources from a primary cell to a secondary
cell, the programming of the various hardware components,
and other features can all be varied depending upon the type/

5 needs of the computer system being used and the applications
being executed. For example, while the above description of
the operation of the computer system 1 primarily envisions
the sending of requests by the CPU located on the primary
cell, it should be understood that it is also possible for
requests to be provided from other sources including, for
example, one or more of the cores on the secondary cell,
and/or peripherals of other sorts (e.g. I/O devices) within the
computer system 1. In such cases, the requests can be handled
in the same manner as that described above, or at least in
manners similar or analogous to that described above.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein, but include modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments as come within the scope
of' the following claims.

10

15

20

We claim:

1. A system for migrating at least one critical resource
during a migration of an operative portion of a computer
system, the system comprising:

an intermediary fabric component;

first and second agent components coupled by way of the

intermediary fabric component; and
first and second additional components each of which is
capable of supporting the at least one critical resource,

wherein a first of the atleast one critical resource supported
by the first additional component is capable of being
substantially copied to the second additional component
via the first and second agent components and the inter-
mediary fabric component,

wherein, during operation of the system in a transfer of

active status mode, interrupts issuing from at least one
autonomously-updated resource implemented upon
each of the first and second additional components are
accumulated in first and second interrupt accumulators
associated with the first and second additional compo-
nents, respectively, prior to a later time at which a pro-
cess is performed to eliminate duplicative ones of the
interrupts.

25

30

35

40

45

